Evaluation of cellobiose dehydrogenase and laccase containing culture fluids of Termitomyces sp. OE147 for degradation of Reactive blue 21
نویسندگان
چکیده
This study evaluates culture filtrate, rich in cellobiose dehydrogenase and laccases, of Termitomyces sp. OE 147, in decolouration and degradation of Reactive blue (RB) 21. About 35% decolouration was achieved at low volumes of the culture supernatant without addition of external redox mediators. An optimized dye to culture fluid ratio (75 ppm: 0.1 ml) at a pH of 4-5 resulted in removal of colour by 60%. The degradation products of RB21 were analysed by Electron Spray Ionization-Mass Spectrometry and several small molecules (of m/z 106-199) were detected. These were concluded to be o-Xylene, 2,3-Dihydro-1H-isoindole, Isoindole-1,3-dione, 2,Benzenesulfonyl-ethanol, (4-Hydroxy-phenyl)-sulfamic acid, 2,3-Dihydro-1H-isoindole-5-sulfonic acid and proposed to result from joint action of cellobiose dehydrogenase, laccase, peroxidases and unidentified oxidoreductases present in the culture fluids. Based on the products formed and the known reactions of these enzymes, a degradation pathway was proposed for RB21. The culture fluid was also effective in decolouration (by about 50%) and detoxification (by ∼25%) of the combined effluent collected from a local mill indicating a treatment process that bypasses use of H2O2 and toxic mediators.
منابع مشابه
Cellobiose Dehydrogenase Production by the Genus Cladosporium
Cellobiose dehydrogenase (CDH EC.1.1.5.1) is an extracellular enzyme that mainly produced by wood-degrading fungi. It oxidizes cellobiose to cellobionolactone using a wide spectrum of electron acceptors. The key roles of CDH in growth, metabolism, and some other important cellular processes such as cellulose degradation in fungi have been noted. Since the demands for finding new sources of CDH ...
متن کاملEffect of different wavelengths of light on laccase, cellobiose dehydrogenase, and proteases produced by Cerrena unicolor, Pycnoporus sanguineus and Phlebia lindtneri.
Three species of white rot fungi: Cerrena unicolor, Phlebia lindtneri and Pycnoporus sanguineus were cultured in two different media under five different lighting conditions: dark, white, red, blue, and green light. Laccase, cellobiose dehydrogenase, and protease activities were examined in the samples. Blue light efficiently boosted laccase synthesis in C. unicolor and P. sanguineus, whereas t...
متن کاملApplication of a New Self-Cleaning Filter for Colored Wastewaters Treatment Using Laccase Enzyme Immobilized on Activated CARBON powder and fiber
The objective of this work is investigation of the adsorption and decomposition of Reactive Blue 19 from industrial wastewaters using laccase enzyme immobilized on activated carbon powder and fiber as adsorbent. Time, pH, temperature, stirring rate, the amount of the adsorbent, dye initial concentration, solution flow rate in the column and column height were studied as key operating parame...
متن کاملSymbiotic fungi produce laccases potentially involved in phenol degradation in fungus combs of fungus-growing termites in Thailand.
Fungus-growing termites efficiently decompose plant litter through their symbiotic relationship with basidiomycete fungi of the genus Termitomyces. Here, we investigated phenol-oxidizing enzymes in symbiotic fungi and fungus combs (a substrate used to cultivate symbiotic fungi) from termites belonging to the genera Macrotermes, Odontotermes, and Microtermes in Thailand, because these enzymes ar...
متن کاملBioprospecting and molecular characterization of laccase producing bacteriafrom industrial contaminated sites
Laccases have vast prospective for biotechnological applications due to their outstanding bioremediation potential. These include abundant applications in effluent detoxification, enzymatic conversion of chemical intermediates, wine clarification degradation of textile dyes etc. In the present study, two potential microbes were isolated on solid medium containing guaiacol and ABTS for laccase a...
متن کامل